16526-BNK-V-Com Sc-503-DSE-I-19-C.docx

Course Code : SH/CSC-503-DSE-I

SH-V/Com. Sc.-503-DSE-I/19

B.Sc. 5th Semester (Honours) Examination, 2019-20 COMPUTER SCIENCE

Course ID : 51516

Course Title: Numerical Methods

Time: 1 Hour 15 Minutes

The figures in the right hand side margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions:

- (a) What do you mean by the rate of convergence?
- (b) What do you mean by the order of a numerical method?
- (c) Write the ordinary format for floating point representation.
- (d) Which method for root finding is most effective?
- (e) Distinguish between Gauss and Gauss-Jordan method for solving a system of linear equations.
- (f) Why interpolation is needed?
- (g) Distinguish between interpolation and extrapolation.
- (h) Name some methods for numerical integration.

2. Answer *any two* questions:

- (a) Why Regula-Falsi method is used? Write an algorithm for Regula-Falsi method. 1+4=5
- (b) Why Gauss-Seidel method is used? Discuss the method. 1+4=5
- (c) Use Newton-Raphson method, with 3 as starting point, to find a fraction that is within 10^{-8} of $\sqrt{10}$. Show that your answer is indeed within 10^{-8} of the truth. 4+1=5
- (d) Discuss various approaches for numerical differentiation.
- 3. Answer *any one* question:
 - (a) From the following data, estimate the number of persons earning weekly wages between Rs. 60 and Rs. 70:

Wages (Rs.)	< 40	40–60	60-80	80–100	100–120
No. of persons (in thousand)	250	120	100	70	50

Name some extrapolation techniques.

51516/16526

Full Marks: 25

1×5=5

 $10 \times 1 = 10$

8+2=10

 $5 \times 2 = 10$

SH-V/Com. Sc.-503-DSE-I/19 (2)

(b) Using Rk method of fourth order, solve $\frac{dy}{dx} = 3x + y/2$ with y(0) = 1, at x = 0.2, taking h = 0.1. 10×1=10

B.Sc. 5th Semester (Honours) Examination, 2019-20 COMPUTER SCIENCE

(3)

Course ID : 51516

Course Code : SH/CSC-503-DSE-I

Course Title: Operational Research

Time: 1 Hour 15 Minutes

The figures in the right hand side margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions:

- (a) State some demerits of OR.
- (b) In which century OR started to develop as a new field?
- (c) What is convex set?
- (d) What do you mean by linear independence of vectors?
- (e) Define dual problem.
- (f) Why sensitivity analysis is done?
- (g) Why big-M method is so important?
- (h) When phase switching is done in two phase method?
- 2. Answer *any two* questions:
 - (a) Prove that every convex polyhedron is a convex set.
 - (b) What are the various phases of OR? Discuss.
 - (c) Briefly discuss how OR may be used in decision making at management level.
 - (d) Consider the problem:

Max $z = 3x_1 + 4x_2$ subject to

 $4x_1 + 3x_2 \ge 12, x_1 + 2x_2 \le 2, x_1 \ge 0, x_2 \ge 0$

Show graphically that the problem has no feasible extreme points. What can be concluded regarding its solution?

- 3. Answer *any one* question:
 - (a) Solve the following problem using big-M Method:

Min
$$Z = 2x_1 - 3x_2 + 6x_3$$
 subject to
 $3x_1 - 4x_2 - 6x_3 \le 2$
 $2x_1 + x_2 + 2x_3 \ge 11$
 $x_1 + 3x_2 - 2x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$

Full Marks: 25

 $1 \times 5 = 5$

5×2=10

 $10 \times 1 = 10$

SH-V/Com. Sc.-503-DSE-I/19

(b) Solve the following problem by solving its dual:

(4)

Max $Z = y_1 + y_2 + y_3$ subject to $2y_1 + y_2 + 2y_3 \le 2$ $4y_1 + 2y_2 + y_3 \le 2$ $y_1, y_2, y_3 \ge 0$